

Silver Creek Watershed

TMDL Load Reduction Alternatives Assessment and Analysis

Bruce Marshall Tetra Tech

Presentation Outline

- · Project Goal
- · Project Objectives
- Potential Types of Cleanup Options
- · Project Constraints
- Data Require ments

 Nature & Extent of Contamination

 Design Development
- Effectiveness Evaluation

Issues

Mine wastes in lower Silver Creek:

- Contribute to exceedance of zinc and cadmium aquatic life standards in Silver Creek.
- 2. Exceed the lead level developed for sediment in the Richardson Flat ROD.
- Lead and arsenic soil concentrations pose potential human health risk.

Project Goal

Develop a series of remedial alternatives to provide landowners, developers and public entities with practical methods to address mine waste contamination on their properties.

Project Objectives

- Identify best practices to:
 - Reduce zinc and cadmium loading to Silver Creek to meet aquatic life standards (TMDL Report)
 - Reduce ecological risk by lowering lead concentrations in sediment (Richardson Flat ROD)
- Support Summit County's development of their Soils Ordinance (lead and arsenic)
- · No net loss of wetlands (Ar my Corps of Engineers)

Cleanup Options General Categories

- · Institutional Controls
- Containment/Collection
- Removal
- Treatment
- · Resource Utilization

Cleanup Options

Institutional Controls

Definition:

Legal and/or physical restrictions ap plied to the Site that are intended to control or prevent exposure and/or access to contaminan t source areas.

Examples:

Summit County Soils Ordinance

Irrigation Techniques & Diversions

Cleanup Options Containment/Collection

Definition:

Physical measures appl ied to the sources and transport mechanisms to control the release of contaminants or to inhibit direct contact or exposure.

Examples:

Groundwater: Trenches/drains; impermeable barriers

Surface Water: Diversion ditches; bank stabilization; channelization

Mine Wastes: Revegetation; grading, capping

Cleanup Options

Removal

Definition:

Excavation of contaminant sources followed by transport and disposal at a different location.

Examples:

Removal & Transport: limited options

Disposal: onsite versus offsite

Cleanup Options Treatment

Definition

Physical or chemical measures applied to sources or impacted waters to reduce the toxicity and/or mobility of contaminants.

Examples

Mine Wastes: Soil amendments (in conjunction with revegetation)

Water Treatment (passive); Constructed wetlands; subsurface reactive barriers; reservoir

Cleanup Options

Resource Utilization

Definition:

The use/reuse of the source material as a commercial product.

Examples:

Reprocessing of tailings for metals recovery

Dependent upon tailing mineralogy and economic feasibility

Project Constraints

- **Upstream Metals Loading**
 - Water entering the Site exceeds aquatic life standards
- · Water Rights
 - Potential for increase/decrease in wate r diverted around lower Silver Creek
- Wetlands Regulations
 - Remedial alternatives cannot result in a net loss of wetlands

Data Requirements

What Do We Need Data For?

- · Define Nature & Extent of Contamination and **Contaminant Transport Mechanisms**
- Design
- Evaluate the Effectiveness of various Remedial Alternatives

Data Requirements

Existing Information/Data:

- Mine Waste
- UDEQ Innovative Assessment Report (2002)

 Metals concentrations in surficial soils in Silver Creek floodplain
- Surface Water
- USGS Tracer Dilution Study (2004)
- Post spring runoff (high flow) conditions
 UDEQ Sampling (2006)
 Fall (low flow) conditions

- Groundwater

Data Requirements

Data Gaps

- · Mine Waste/Upland So ils
 - Depth and volume of mine wastes in Silver Creek floodplain
 - Physical properties of mine wastes
 - Metals concentrations in upland area soils
- Surface Water
 - Fall (low flow) conditions
- Groundwater
 - Flow paths (water levels)
 - Chemistry

Conceptual Monitoring Plan

- Two-Phased Monitoring Approach
 - Phase I Characterization
 - Phase II Detailed surface water, sediment, groundwater, and soil sample collection

Work performed in Phase I will be used to streamline data collection for Phase II

Conceptual Monitoring Plan

- · Phase I (August 2007)
 - 6 transects
 - Soil samples analyzed for lead, arseni c, zinc, and cadmium, nutrients, mineralogy, and engineering properties
 - Tractor-mounted drill rig used to assess depth of
 - Small diameter monitoring wells
 - Rhodamine dye used to identify the main water course and mark sample stations for Phase II low flow study
 - Preliminary wetlands assessment

Tractor mounted direct push rig

- Collect subsurfa ce samples
- Install shallow monitoring wells

Conceptual Monitoring Plan

- Phase II (October/November 2007)
 - Surface water and stream sediment samples collected at stations marked during Phase I
 - Flow measurements
 - Additional soils analysis. Sampling depths and locations based on Phase I results.
 - Groundwater sampling from piezometers installed during Phase I

Conceptual Monitoring Plan

- Soil
- III
 Nutrients, acid-base account, pH
 X-Ray Fluorescence used to measure Pb, As, Zn, and Cd
 Grain size analysis, Atterberg limits, and moisture-density relationship
- Surface water

 Total and dissolved metals

 pH, major anions and cations

- Sediment

 Total extraction to quantify total metals
 Partial extraction to quantify table metals
- Groundwater
- Dissolved metals
 pH, major anions and cations
 Ferrous/Ferric Iron Ratio

Questions?